Attention-Based End-To-End Named Entity Recognition From Speech

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

3 Sitaatiot (Scopus)
210 Lataukset (Pure)

Abstrakti

Named entities are heavily used in the field of spoken language understanding, which uses speech as an input. The standard way of doing named entity recognition from speech involves a pipeline of two systems, where first the automatic speech recognition system generates the transcripts, and then the named entity recognition system produces the named entity tags from the transcripts. In such cases, automatic speech recognition and named entity recognition systems are trained independently, resulting in the automatic speech recognition branch not being optimized for named entity recognition and vice versa. In this paper, we propose two attention-based approaches for extracting named entities from speech in an end-to-end manner, that show promising results. We compare both attention-based approaches on Finnish, Swedish, and English data sets, underlining their strengths and weaknesses.
AlkuperäiskieliEnglanti
OtsikkoText, Speech, and Dialogue - 24th International Conference, TSD 2021, Proceedings
ToimittajatKamil Ekštein, František Pártl, Miloslav Konopík
KustantajaSpringer
Sivut469 - 480
Sivumäärä12
ISBN (elektroninen)978-3-030-83527-9
ISBN (painettu)9783030835262
DOI - pysyväislinkit
TilaJulkaistu - 2021
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Text, Speech, and Dialogue - Olomouc, Tshekki
Kesto: 6 syysk. 20219 syysk. 2021
Konferenssinumero: 24

Julkaisusarja

NimiLecture Notes in Computer Science
Vuosikerta12848
ISSN (painettu)0302-9743
ISSN (elektroninen)1611-3349

Conference

ConferenceInternational Conference on Text, Speech, and Dialogue
LyhennettäTSD
Maa/AlueTshekki
KaupunkiOlomouc
Ajanjakso06/09/202109/09/2021

Sormenjälki

Sukella tutkimusaiheisiin 'Attention-Based End-To-End Named Entity Recognition From Speech'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä