Atomic structures, conformers and thermodynamic properties of 32k atmospheric molecules

Vitus Besel, Milica Todorović, Theo Kurtén, Patrick Rinke, Hanna Vehkamäki

Tutkimustuotos: LehtiartikkeliData ArticleScientificvertaisarvioitu

8 Sitaatiot (Scopus)
97 Lataukset (Pure)

Abstrakti

Low-volatile organic compounds (LVOCs) drive key atmospheric processes, such as new particle formation (NPF) and growth. Machine learning tools can accelerate studies of these phenomena, but extensive and versatile LVOC datasets relevant for the atmospheric research community are lacking. We present the GeckoQ dataset with atomic structures of 31,637 atmospherically relevant molecules resulting from the oxidation of α-pinene, toluene and decane. For each molecule, we performed comprehensive conformer sampling with the COSMOconf program and calculated thermodynamic properties with density functional theory (DFT) using the Conductor-like Screening Model (COSMO). Our dataset contains the geometries of the 7 Mio. conformers we found and their corresponding structural and thermodynamic properties, including saturation vapor pressures (pSat), chemical potentials and free energies. The pSat were compared to values calculated with the group contribution method SIMPOL. To validate the dataset, we explored the relationship between structural and thermodynamic properties, and then demonstrated a first machine-learning application with Gaussian process regression.

AlkuperäiskieliEnglanti
Artikkeli450
Sivut1-11
Sivumäärä11
JulkaisuScientific Data
Vuosikerta10
Numero1
DOI - pysyväislinkit
TilaJulkaistu - 12 heinäk. 2023
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Atomic structures, conformers and thermodynamic properties of 32k atmospheric molecules'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä