Asymptotic stability and decay rates of homogeneous positive systems with bounded and unbounded delays

Hamid Reza Feyzmahdavian, Themistoklis Charalambous, Mikael Johansson

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

29 Sitaatiot (Scopus)

Abstrakti

There are several results on the stability of nonlinear positive systems in the presence of time delays. However, most of them assume that the delays are constant. This paper considers time-varying, possibly unbounded, delays and establishes asymptotic stability and bounds the decay rate of a significant class of nonlinear positive systems which includes positive linear systems as a special case. Specifically, we present a necessary and sufficient condition for delay-independent stability of continuous-time positive systems whose vector fields are cooperative and homogeneous. We show that global asymptotic stability of such systems is independent of the magnitude and variation of the time delays. For various classes of time delays, we are able to derive explicit expressions that quantify the decay rates of positive systems. We also provide the corresponding counterparts for discrete-time positive systems whose vector fields are nondecreasing and homogeneous.

AlkuperäiskieliEnglanti
Sivut2623-2650
Sivumäärä28
JulkaisuSIAM Journal on Control and Optimization
Vuosikerta52
Numero4
DOI - pysyväislinkit
TilaJulkaistu - 2014
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki Sukella tutkimusaiheisiin 'Asymptotic stability and decay rates of homogeneous positive systems with bounded and unbounded delays'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

  • Siteeraa tätä