ASVspoof 2019: a large-scale public database of synthetized, converted and replayed speech

Xin Wang, Junichi Yamagishi, Massimiliano Todisco, Hector Delgado, Andreas Nautsch, Nicholas Evans, Md Sahidullah, Ville Vestman, Tomi Kinnunen, Kong Aik Lee, Lauri Juvela, Paavo Alku, Yu-Huai Peng, Hsin-Te Hwang, Yu Tsao, Hsin-Min Wang, Sebastien Le Maguer, Markus Becker, Fergus Henderson, Rob ClarkYu Zhang, Quan Wang, Ye Jia, Kai Onuma, Koji Mushika, Takashi Kaneda, Yuan Jiang, Li-Juan Liu, Yi-Chiao Wu, Wen-Chin Huang, Tomoki Toda, Kou Tanaka, Hirokazu Kameoka, Ingmar Steiner, Driss Matrouf, Jean-Francois Bonastre, Avashna Govender, Srikanth Ronanki, Jing-Xuan Zhang, Zhen-Hua Ling

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

113 Sitaatiot (Scopus)
23 Lataukset (Pure)

Abstrakti

Automatic speaker verification (ASV) is one of the most natural and convenient means of biometric person recognition. Unfortunately, just like all other biometric systems, ASV is vulnerable to spoofing, also referred to as “presentation attacks.” These vulnerabilities are generally unacceptable and call for spoofing countermeasures or “presentation attack detection” systems. In addition to impersonation, ASV systems are vulnerable to replay, speech synthesis, and voice conversion attacks. The ASVspoof challenge initiative was created to foster research on anti-spoofing and to provide common platforms for the assessment and comparison of spoofing countermeasures. The first edition, ASVspoof 2015, focused upon the study of countermeasures for detecting of text-to-speech synthesis (TTS) and voice conversion (VC) attacks. The second edition, ASVspoof 2017, focused instead upon replay spoofing attacks and countermeasures. The ASVspoof 2019 edition is the first to consider all three spoofing attack types within a single challenge. While they originate from the same source database and same underlying protocol, they are explored in two specific use case scenarios. Spoofing attacks within a logical access (LA) scenario are generated with the latest speech synthesis and voice conversion technologies, including state-of-the-art neural acoustic and waveform model techniques. Replay spoofing attacks within a physical access (PA) scenario are generated through carefully controlled simulations that support much more revealing analysis than possible previously. Also new to the 2019 edition is the use of the tandem detection cost function metric, which reflects the impact of spoofing and countermeasures on the reliability of a fixed ASV system. This paper describes the database design, protocol, spoofing attack implementations, and baseline ASV and countermeasure results. It also describes a human assessment on spoofed data in logical access. It was demonstrated that the spoofing data in the ASVspoof 2019 database have varied degrees of perceived quality and similarity to the target speakers, including spoofed data that cannot be differentiated from bona fide utterances even by human subjects. It is expected that the ASVspoof 2019 database, with its varied coverage of different types of spoofing data, could further foster research on anti-spoofing.

AlkuperäiskieliEnglanti
Artikkeli101114
JulkaisuComputer Speech and Language
Vuosikerta64
DOI - pysyväislinkit
TilaJulkaistu - marrask. 2020
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki

Sukella tutkimusaiheisiin 'ASVspoof 2019: a large-scale public database of synthetized, converted and replayed speech'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä