Abstrakti
Graphics processing units (GPUs) are coprocessors, which offer higher throughput and better power efficiency than central processing units in dataparallel tasks. For this reason, graphics processors provide a good platform for high-performance computing. However, programming GPUs such that all the available performance is utilized requires in-depth knowledge of the architecture of the hardware. Additionally, the problem of high-order stencil computations on GPUs in challenging multiphysics applications has not been adequately explored in previous work. In this thesis, we address these issues by presenting a library, an efficient algorithm and a domain-specific language for solving stencil computations within a structured grid. We tested our implementation by simulating magnetohydrodynamics, which involved the computation of first, second, and cross partial derivatives using second-, fourth-, sixth-, and eight-order finite differences with single and double precision. The running time of our integration kernel was 2.8–9.1 times slower than the theoretical minimum time, which it would take to read the computational domain and write it back to device memory exactly once, without taking into account the effects of finite caches or arithmetic operations on performance. Additionally, we made a performance comparison with a CPU solver widely used for scientific computations, which we benchmarked on a total of 24 cores of two Intel Xeon E5-2690 v3 processors. Our solver, benchmarked on a Tesla P100 PCIe GPU, outperformed the CPU solver by factors of 6.7 and 10.4 when using single and double precision, respectively.
Alkuperäiskieli | Englanti |
---|---|
Pätevyys | Maisteritutkinto |
Myöntävä instituutio |
|
Kustantaja | |
Tila | Julkaistu - 17 kesäk. 2019 |
OKM-julkaisutyyppi | G2 Pro gradu, diplomityö, ylempi amk-opinnäytetyö |