Assessing abundance of populations with limited data: Lessons learned from data-poor fisheries stock assessment

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Tutkijat

Organisaatiot

  • University of Helsinki

Kuvaus

stimation of population abundances in the absence of good observational data are notoriously difficult, yet urgently needed for biodiversity conservation and sustainable use of natural resources. In the field of fisheries research, management regulations have long demanded population abundance estimates even if data available are sparse, leading to the development of a range of fish stock assessment methods designed for data-poor populations. Here, we present methods developed within the context of fisheries research that can be applied to conduct population abundance estimations when facing data-limitations. We begin the review from the less data-demanding approaches and continue with more data-intensive ones. We discuss the advantages and caveats of these approaches, the challenges and management implications associated with data-poor stock assessments, and we propose the implementation of the Bayesian hierarchical framework as the most promising avenue for future development and improvement of the current practices.

Yksityiskohdat

AlkuperäiskieliEnglanti
Sivut25-38
JulkaisuENVIRONMENTAL REVIEWS
Vuosikerta24
Numero1
TilaJulkaistu - 2016
OKM-julkaisutyyppiA2 Arvio tiedejulkaisuussa (artikkeli)

ID: 34643036