Artificial Intelligence for Radiation Oncology Applications Using Public Datasets

Kareem A. Wahid, Enrico Glerean, Jaakko Sahlsten, Joel Jaskari, Kimmo Kaski, Mohamed A. Naser, Renjie He, Abdallah S.R. Mohamed, Clifton D. Fuller*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliReview Articlevertaisarvioitu

3 Sitaatiot (Scopus)
40 Lataukset (Pure)

Abstrakti

Artificial intelligence (AI) has exceptional potential to positively impact the field of radiation oncology. However, large curated datasets - often involving imaging data and corresponding annotations - are required to develop radiation oncology AI models. Importantly, the recent establishment of Findable, Accessible, Interoperable, Reusable (FAIR) principles for scientific data management have enabled an increasing number of radiation oncology related datasets to be disseminated through data repositories, thereby acting as a rich source of data for AI model building. This manuscript reviews the current and future state of radiation oncology data dissemination, with a particular emphasis on published imaging datasets, AI data challenges, and associated infrastructure. Moreover, we provide historical context of FAIR data dissemination protocols, difficulties in the current distribution of radiation oncology data, and recommendations regarding data dissemination for eventual utilization in AI models. Through FAIR principles and standardized approaches to data dissemination, radiation oncology AI research has nothing to lose and everything to gain.

AlkuperäiskieliEnglanti
Sivut400-414
JulkaisuSeminars in Radiation Oncology
Vuosikerta32
Numero4
DOI - pysyväislinkit
TilaJulkaistu - lokak. 2022
OKM-julkaisutyyppiA2 Katsausartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Artificial Intelligence for Radiation Oncology Applications Using Public Datasets'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä