Artificial Intelligence Enabled Radio Propagation for Communications-Part I: Channel Characterization and Antenna-Channel Optimization

Chen Huang, Ruisi He, Bo Ai, Andreas F. Molisch, Buon Kiong Lau, Katsuyuki Haneda, Bo Liu, Cheng Xiang Wang, Mi Yang, Claude Oestges, Zhangdui Zhong

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

84 Sitaatiot (Scopus)

Abstrakti

To provide higher data rates, as well as better coverage, cost efficiency, security, adaptability, and scalability, the 5G and beyond 5G networks are developed with various artificial intelligence techniques. In this two-part paper, we investigate the application of artificial intelligence (AI) and in particular machine learning (ML) to the study of wireless propagation channels. It firstly provides a comprehensive overview of ML for channel characterization and ML-based antenna-channel optimization in this first part, and then it gives a state-of-the-art literature review of channel scenario identification and channel modeling in Part II. Fundamental results and key concepts of ML for communication networks are presented, and widely used ML methods for channel data processing, propagation channel estimation, and characterization are analyzed and compared. A discussion of challenges and future research directions for ML-enabled next generation networks of the topics covered in this part rounds off the paper.

AlkuperäiskieliEnglanti
Sivut3939-3954
Sivumäärä16
JulkaisuIEEE Transactions on Antennas and Propagation
Vuosikerta70
Numero6
Varhainen verkossa julkaisun päivämäärä2022
DOI - pysyväislinkit
TilaJulkaistu - kesäk. 2022
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Artificial Intelligence Enabled Radio Propagation for Communications-Part I: Channel Characterization and Antenna-Channel Optimization'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä