Artificial Intelligence Enabled Radio Propagation for Communications-Part II: Scenario Identification and Channel Modeling

Chen Huang, Ruisi He, Bo Ai, Andreas F. Molisch, Buon Kiong Lau, Katsuyuki Haneda, Bo Liu, Cheng Xiang Wang, Mi Yang, Claude Oestges, Zhangdui Zhong

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

135 Sitaatiot (Scopus)

Abstrakti

This two-part paper investigates the application of artificial intelligence (AI) and, in particular, machine learning (ML) to the study of wireless propagation channels. In Part I of this article, we introduced AI and ML and provided a comprehensive survey on ML-enabled channel characterization and antenna-channel optimization, and in this part (Part II), we review the state-of-the-art literature on scenario identification and channel modeling here. In particular, the key ideas of ML for scenario identification and channel modeling/prediction are presented, and the widely used ML methods for propagation scenario identification and channel modeling and prediction are analyzed and compared. Based on the state of the art, the future challenges of AI-/ML-based channel data processing techniques are given as well.

AlkuperäiskieliEnglanti
Sivut3955-3969
Sivumäärä15
JulkaisuIEEE Transactions on Antennas and Propagation
Vuosikerta70
Numero6
Varhainen verkossa julkaisun päivämäärä2022
DOI - pysyväislinkit
TilaJulkaistu - kesäk. 2022
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Artificial Intelligence Enabled Radio Propagation for Communications-Part II: Scenario Identification and Channel Modeling'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä