TY - JOUR
T1 - Approximation schemes for geometric coverage problems
AU - Chaplick, Steven
AU - De, Minati
AU - Ravsky, Alexander
AU - Spoerhase, Joachim
N1 - Conference code: 26
PY - 2018/8/1
Y1 - 2018/8/1
N2 - In their seminal work, Mustafa and Ray [30] showed that a wide class of geometric set cover (SC) problems admit a PTAS via local search - this is one of the most general approaches known for such problems. Their result applies if a naturally defined "exchange graph" for two feasible solutions is planar and is based on subdividing this graph via a planar separator theorem due to Frederickson [17]. Obtaining similar results for the related maximum coverage problem (MC) seems non-trivial due to the hard cardinality constraint. In fact, while Badanidiyuru, Kleinberg, and Lee [4] have shown (via a different analysis) that local search yields a PTAS for two-dimensional real halfspaces, they only conjectured that the same holds true for dimension three. Interestingly, at this point it was already known that local search provides a PTAS for the corresponding set cover case and this followed directly from the approach of Mustafa and Ray. In this work we provide a way to address the above-mentioned issue. First, we propose a color-balanced version of the planar separator theorem. The resulting subdivision approximates locally in each part the global distribution of the colors. Second, we show how this roughly balanced subdivision can be employed in a more careful analysis to strictly obey the hard cardinality constraint. More specifically, we obtain a PTAS for any "planarizable" instance of MC and thus essentially for all cases where the corresponding SC instance can be tackled via the approach of Mustafa and Ray. As a corollary, we confirm the conjecture of Badanidiyuru, Kleinberg, and Lee [4] regarding real halfspaces in dimension three. We feel that our ideas could also be helpful in other geometric settings involving a cardinality constraint.
AB - In their seminal work, Mustafa and Ray [30] showed that a wide class of geometric set cover (SC) problems admit a PTAS via local search - this is one of the most general approaches known for such problems. Their result applies if a naturally defined "exchange graph" for two feasible solutions is planar and is based on subdividing this graph via a planar separator theorem due to Frederickson [17]. Obtaining similar results for the related maximum coverage problem (MC) seems non-trivial due to the hard cardinality constraint. In fact, while Badanidiyuru, Kleinberg, and Lee [4] have shown (via a different analysis) that local search yields a PTAS for two-dimensional real halfspaces, they only conjectured that the same holds true for dimension three. Interestingly, at this point it was already known that local search provides a PTAS for the corresponding set cover case and this followed directly from the approach of Mustafa and Ray. In this work we provide a way to address the above-mentioned issue. First, we propose a color-balanced version of the planar separator theorem. The resulting subdivision approximates locally in each part the global distribution of the colors. Second, we show how this roughly balanced subdivision can be employed in a more careful analysis to strictly obey the hard cardinality constraint. More specifically, we obtain a PTAS for any "planarizable" instance of MC and thus essentially for all cases where the corresponding SC instance can be tackled via the approach of Mustafa and Ray. As a corollary, we confirm the conjecture of Badanidiyuru, Kleinberg, and Lee [4] regarding real halfspaces in dimension three. We feel that our ideas could also be helpful in other geometric settings involving a cardinality constraint.
KW - Approximation scheme
KW - Balanced separators
KW - Geometric approximation algorithms
KW - Local search
KW - Maximum coverage
UR - http://www.scopus.com/inward/record.url?scp=85052514836&partnerID=8YFLogxK
U2 - 10.4230/LIPIcs.ESA.2018.17
DO - 10.4230/LIPIcs.ESA.2018.17
M3 - Conference article
AN - SCOPUS:85052514836
VL - 112
SP - 1
EP - 15
JO - Leibniz international proceedings in informatics
JF - Leibniz international proceedings in informatics
SN - 1868-8969
T2 - European Symposia on Algorithms
Y2 - 20 August 2018 through 22 August 2018
ER -