Abstrakti
State-space representations of Gaussian process regression use Kalman filtering and smoothing theory to downscale the computational complexity of the regression in the number of data points from cubic to linear. As their exact implementation requires the covariance function to possess rational spectral density, rational approximations to the spectral density must be often used. In this article we introduce new spectral transformation based methods for this purpose: a spectral composition method and a spectral preconditioning method. We study convergence of the approximations theoretically and run numerical experiments to attest their accuracy for different densities, in particular the fractional Matern.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings of the 2016 IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2016 |
Toimittajat | Fransesco A.N. Palmieri, Aurelio Uncini, Kostas Diamantaras, Jan Larsen |
Kustantaja | IEEE |
Vuosikerta | 2016-November |
ISBN (elektroninen) | 9781509007462 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 8 marrask. 2016 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE International Workshop on Machine Learning for Signal Processing - Salerno, Italia Kesto: 13 syysk. 2016 → 16 syysk. 2016 Konferenssinumero: 26 http://mlsp2016.conwiz.dk/home.htm |
Julkaisusarja
Nimi | IEEE International Workshop on Machine Learning for Signal Processing |
---|---|
Kustantaja | IEEE COMPUTER SOCIETY PRESS |
ISSN (painettu) | 2161-0363 |
ISSN (elektroninen) | 2161-0371 |
Workshop
Workshop | IEEE International Workshop on Machine Learning for Signal Processing |
---|---|
Lyhennettä | MLSP |
Maa/Alue | Italia |
Kaupunki | Salerno |
Ajanjakso | 13/09/2016 → 16/09/2016 |
www-osoite |