Approximate solutions to Mathieu's equation

Samuel A. Wilkinson*, Nicolas Vogt, Dmitry S. Golubev, Jared H. Cole

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

13 Sitaatiot (Scopus)

Abstrakti

Mathieu's equation has many applications throughout theoretical physics. It is especially important to the theory of Josephson junctions, where it is equivalent to Schrödinger's equation. Mathieu's equation can be easily solved numerically, however there exists no closed-form analytic solution. Here we collect various approximations which appear throughout the physics and mathematics literature and examine their accuracy and regimes of applicability. Particular attention is paid to quantities relevant to the physics of Josephson junctions, but the arguments and notation are kept general so as to be of use to the broader physics community.

AlkuperäiskieliEnglanti
Sivut24-30
Sivumäärä7
JulkaisuPhysica E: Low-Dimensional Systems and Nanostructures
Vuosikerta100
DOI - pysyväislinkit
TilaJulkaistu - 1 kesäk. 2018
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki

Sukella tutkimusaiheisiin 'Approximate solutions to Mathieu's equation'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä