Applications of polymatroid theory to distributed storage systems

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

7 Sitaatiot (Scopus)
197 Lataukset (Pure)

Abstrakti

In this paper, a link between polymatroid theory and locally repairable codes (LRCs) is established. The codes considered here are completely general in that they are subsets of An, where A is an arbitrary finite set. Three classes of LRCs are considered, both with and without availability, and for both information-symbol and all-symbol locality. The parameters and classes of LRCs are generalized to polymatroids, and a generalized Singelton bound on the parameters for these three classes of polymatroids and LRCs is given. This result generalizes the earlier Singleton-type bounds given for LRCs. Codes achieving these bounds are coined perfect, as opposed to the more common term optimal used earlier, since they might not always exist. Finally, new constructions of perfect linear LRCs are derived from gammoids, which are a special class of matroids. Matroids, for their part, form a subclass of polymatroids and have proven useful in analyzing and constructing linear LRCs.

AlkuperäiskieliEnglanti
Otsikko2015 53rd Annual Allerton Conference on Communication, Control, and Computing, Allerton 2015
KustantajaIEEE
Sivut231-237
Sivumäärä7
ISBN (elektroninen)978-1-5090-1824-6
ISBN (painettu)9781509018239
DOI - pysyväislinkit
TilaJulkaistu - 4 huhtik. 2016
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaAllerton Conference on Communication, Control, and Computing - Monticello, Yhdysvallat
Kesto: 29 syysk. 20152 lokak. 2015
Konferenssinumero: 53

Conference

ConferenceAllerton Conference on Communication, Control, and Computing
LyhennettäAllerton
Maa/AlueYhdysvallat
KaupunkiMonticello
Ajanjakso29/09/201502/10/2015

Sormenjälki

Sukella tutkimusaiheisiin 'Applications of polymatroid theory to distributed storage systems'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä