Application of surrogate optimization routine with clustering technique for optimal design of an induction motor

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

2 Sitaatiot (Scopus)
17 Lataukset (Pure)

Abstrakti

This paper proposes a new surrogate optimization routine for optimal design of a direct on line (DOL) squirrel cage induction motor. The geometry of the motor is optimized to maximize its electromagnetic efficiency while respecting the constraints, such as output power and power factor. The routine uses the methodologies of Latin-hypercube sampling, a clustering technique and a Box–Behnken design for improving the accuracy of the surrogate model while efficiently utilizing the computational resources. The global search-based particle swarm optimization (PSO) algorithm is used for optimizing the surrogate model and the pattern search algorithm is used for fine-tuning the surrogate optimal solution. The proposed surrogate optimization routine achieved an optimal design with an electromagnetic efficiency of 93.90%, for a 7.5 kW motor. To benchmark the performance of the surrogate optimization routine, a comparative analysis was carried out with a direct optimization routine that uses a finite element method (FEM)-based machine model as a cost function.

AlkuperäiskieliEnglanti
Artikkeli5042
Sivumäärä19
JulkaisuEnergies
Vuosikerta14
Numero16
DOI - pysyväislinkit
TilaJulkaistu - 17 elok. 2021
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki

Sukella tutkimusaiheisiin 'Application of surrogate optimization routine with clustering technique for optimal design of an induction motor'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä