Projekteja vuodessa
Abstrakti
Background
Radiotherapy is a core treatment modality for oropharyngeal cancer (OPC), where the primary gross tumor volume (GTVp) is manually segmented with high interobserver variability. This calls for reliable and trustworthy automated tools in clinician workflow. Therefore, accurate uncertainty quantification and its downstream utilization is critical.
Methods
Here we propose uncertainty-aware deep learning for OPC GTVp segmentation, and illustrate the utility of uncertainty in multiple applications. We examine two Bayesian deep learning (BDL) models and eight uncertainty measures, and utilize a large multi-institute dataset of 292 PET/CT scans to systematically analyze our approach.
Results
We show that our uncertainty-based approach accurately predicts the quality of the deep learning segmentation in 86.6% of cases, identifies low performance cases for semi-automated correction, and visualizes regions of the scans where the segmentations likely fail.
Conclusions
Our BDL-based analysis provides a first-step towards more widespread implementation of uncertainty quantification in OPC GTVp segmentation.
Radiotherapy is a core treatment modality for oropharyngeal cancer (OPC), where the primary gross tumor volume (GTVp) is manually segmented with high interobserver variability. This calls for reliable and trustworthy automated tools in clinician workflow. Therefore, accurate uncertainty quantification and its downstream utilization is critical.
Methods
Here we propose uncertainty-aware deep learning for OPC GTVp segmentation, and illustrate the utility of uncertainty in multiple applications. We examine two Bayesian deep learning (BDL) models and eight uncertainty measures, and utilize a large multi-institute dataset of 292 PET/CT scans to systematically analyze our approach.
Results
We show that our uncertainty-based approach accurately predicts the quality of the deep learning segmentation in 86.6% of cases, identifies low performance cases for semi-automated correction, and visualizes regions of the scans where the segmentations likely fail.
Conclusions
Our BDL-based analysis provides a first-step towards more widespread implementation of uncertainty quantification in OPC GTVp segmentation.
Alkuperäiskieli | Englanti |
---|---|
Artikkeli | 110 |
Sivut | 1-12 |
Sivumäärä | 12 |
Julkaisu | Communications Medicine |
Vuosikerta | 4 |
Numero | 1 |
DOI - pysyväislinkit | |
Tila | Julkaistu - jouluk. 2024 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Sormenjälki
Sukella tutkimusaiheisiin 'Application of simultaneous uncertainty quantification and segmentation for oropharyngeal cancer use-case with Bayesian deep learning'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 1 Aktiivinen
-
XAIS/Lampinen: eXplainable AI Technologies for Segmenting 3D Imaging Data
Lampinen, J. (Vastuullinen tutkija), Jaskari, J. (Projektin jäsen), Sahlsten, J. (Projektin jäsen), Kaski, K. (Projektin jäsen), Pykälä, L. (Projektin jäsen), Saukkoriipi, M. (Projektin jäsen), Takko, T. (Projektin jäsen) & Pienimäki, P. (Projektin jäsen)
01/01/2022 → 31/12/2024
Projekti: Academy of Finland: Other research funding