Application of Monte Carlo simulation for estimation of uncertainty of four-point roundness measurements of rolls

T. Widmaier, B. Hemming*, J. Juhanko, P. Kuosmanen, V. P. Esala, A. Lassila, P. Laukkanen, J. Haikio

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

31 Sitaatiot (Scopus)
561 Lataukset (Pure)

Abstrakti

Large-scale rotors in the paper and steel industry are called rolls. Rolls are reground at regular intervals and roundness measurements are made throughout the machining process. Measurement systems for roundness and diameter variation of large rolls (diameter <2000. mm) are available on the market, and generally use two to four sensors and a roundness measurement algorithm. These methods are intended to separate roundness of the rotor from its movement. The hybrid four-point method has improved accuracy, even for harmonic component amplitudes. For reliable measurement results, every measurement should be traceable with an estimation of measurement uncertainty. In this paper, the Monte-Carlo method is used for uncertainty evaluation of the harmonic components of the measured roundness profile under typical industrial conditions. According to the evaluation, the standard uncertainties for the harmonic amplitudes with the hybrid method are below 0.5. μm for the even harmonics and from 1.5. μm to 2.5. μm for the odd harmonics, when the standard uncertainty for the four probes is 0.3. μm each. The standard uncertainty for roundness deviation is 3.3. μm.

AlkuperäiskieliEnglanti
Sivut181–190
Sivumäärä10
JulkaisuPRECISION ENGINEERING: JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY
Vuosikerta48
Varhainen verkossa julkaisun päivämäärä5 jouluk. 2016
DOI - pysyväislinkit
TilaJulkaistu - huhtik. 2017
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Application of Monte Carlo simulation for estimation of uncertainty of four-point roundness measurements of rolls'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä