Antiderivative antialiasing, Lagrange interpolation and spectral flatness

Stefan Bilbao, Fabian Esqueda Flores, Vesa Välimäki

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

10 Sitaatiot (Scopus)
280 Lataukset (Pure)

Abstrakti

Aliasing is major problem in any audio signal processing chain involving nonlinearity. The usual approach to antialiasing involves operation at an oversampled rate-usually 4 to 8 times an audio sample rate. Recently, a new approach to antialiasing in the case of memoryless nonlinearities has been proposed, which relies on operations over the antiderivative of the nonlinear function, and which allows for antialiasing at audio or near-audio rates, and without regard to the particular form of the nonlinearity (i.e., polynomial, or hard clipping). Such techniques may be deduced through an application of Lagrange interpolation over unequally-spaced values, and, furthermore, may be constrained to behave as spectrally transparent “throughs” for nonlinearities which reduce to linear at low signal amplitudes. Numerical results are presented.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the 2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)
JulkaisupaikkaNew Paltz, NY, USA
KustantajaIEEE
Sivut141-145
ISBN (elektroninen)978-1-5386-1632-1
DOI - pysyväislinkit
TilaJulkaistu - 15 lokak. 2017
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE Workshop on Applications of Signal Processing to Audio and Acoustics - New Paltz, NY, USA, New Paltz, Yhdysvallat
Kesto: 15 lokak. 201718 lokak. 2017
http://www.waspaa.com/

Julkaisusarja

NimiIEEE Workshop on Applications of Signal Processing to Audio and Acoustics
ISSN (elektroninen)1947-1629

Workshop

WorkshopIEEE Workshop on Applications of Signal Processing to Audio and Acoustics
LyhennettäWASPAA
Maa/AlueYhdysvallat
KaupunkiNew Paltz
Ajanjakso15/10/201718/10/2017
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Antiderivative antialiasing, Lagrange interpolation and spectral flatness'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä