Abstrakti
In cyber-physical petroleum systems (CPPS), accurate estimation of interwell connectivity is an important process to know reservoir properties comprehensively, determine water injection rate scientifically, and enhance oil recovery effectively for oil and gas (OG) field. In this study, an artificial neural network (ANN) based analysis method is proposed to estimate interwell connectivity. The generated neural network is used to define the mapping function between production wells and surrounding injection wells based on the historical water injection and liquid production data. Finally, the proposed method is applied to a synthetic reservoir model. Experimental results show that ANN based approach is an efficient method for analyzing interwell connectivity.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings of the 17th IEEE International Conference on Industrial Informatics, INDIN 2019 |
Kustantaja | IEEE |
Sivut | 199-205 |
Sivumäärä | 7 |
ISBN (elektroninen) | 9781728129273 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 1 heinäk. 2019 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE International Conference on Industrial Informatics - Aalto University, Helsinki and Espoo, Suomi Kesto: 22 heinäk. 2019 → 25 heinäk. 2019 Konferenssinumero: 17 https://www.indin2019.org/ |
Julkaisusarja
Nimi | IEEE International Conference on Industrial Informatics |
---|---|
Kustantaja | IEEE |
ISSN (painettu) | 1935-4576 |
ISSN (elektroninen) | 2378-363X |
Conference
Conference | IEEE International Conference on Industrial Informatics |
---|---|
Lyhennettä | INDIN |
Maa/Alue | Suomi |
Kaupunki | Helsinki and Espoo |
Ajanjakso | 22/07/2019 → 25/07/2019 |
www-osoite |