Angle-Delay Features and Distances for Channel Charting

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

3 Lataukset (Pure)

Abstrakti

Channel charting (CC) is an unsupervised machine learning framework for learning a lower-dimensional representation of Channel State Information (CSI), while preserving spatial relations between CSI samples. In this paper, we consider super-resolution features in the angle-delay domain in massive Multiple-Input Multiple-Output (MIMO) systems. We i) treat the angle and delay separately, ii) present the so-called 'Normalized Polar Feature' utilizing the channel statistics of the CSI samples, iii) use the Euclidean distance to compute the dissimilarity matrix, and create the channel chart. Simulation results based on the DeepMIMO data-set show that the proposed super-resolution representation with the Euclidean distance leads to the state-of-the-art quality CC as compared to other CSI features and distances from the literature such as angle-delay-power features with earth mover distance.

AlkuperäiskieliEnglanti
Otsikko2024 IEEE Wireless Communications and Networking Conference, WCNC 2024 - Proceedings
KustantajaIEEE
Sivumäärä6
ISBN (elektroninen)979-8-3503-0358-2
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE Wireless Communications and Networking Conference - Dubai, Yhdistyneet arabiemiirikunnat
Kesto: 21 huhtik. 202424 huhtik. 2024

Julkaisusarja

NimiIEEE Wireless Communications and Networking Conference, WCNC
ISSN (painettu)1525-3511

Conference

ConferenceIEEE Wireless Communications and Networking Conference
Maa/AlueYhdistyneet arabiemiirikunnat
KaupunkiDubai
Ajanjakso21/04/202424/04/2024

Sormenjälki

Sukella tutkimusaiheisiin 'Angle-Delay Features and Distances for Channel Charting'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä