Analyzing Students’ Preferences for LLM-Generated Analogies

Seth Bernstein, Paul Denny, Juho Leinonen, Matt Littlefield, Arto Hellas, Stephen MacNeil

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaPosterScientificvertaisarvioitu

Abstrakti

Introducing students to new concepts in computer science can often be challenging, as these concepts may differ significantly from their existing knowledge and conceptual understanding. To address this, we employed analogies to help students connect new concepts to familiar ideas. Specifically, we generated analogies using large language models (LLMs), namely ChatGPT, and used them to help students make the necessary connections. In this poster, we present the results of our survey, in which students were provided with two analogies relating to different computing concepts, and were asked to describe the extent to which they were accurate, interesting, and useful. This data was used to determine how effective LLM-generated analogies can be for teaching computer science concepts, as well as how responsive students are to this approach.

AlkuperäiskieliEnglanti
Sivut812
Sivumäärä1
DOI - pysyväislinkit
TilaJulkaistu - 8 heinäk. 2024
OKM-julkaisutyyppiEi sovellu
TapahtumaAnnual Conference on Innovation and Technology in Computer Science Education - Università degli Studi di Milano, Milan, Italia
Kesto: 8 heinäk. 202410 heinäk. 2024
Konferenssinumero: 29
https://iticse.acm.org/2024/

Conference

ConferenceAnnual Conference on Innovation and Technology in Computer Science Education
LyhennettäITiCSE
Maa/AlueItalia
KaupunkiMilan
Ajanjakso08/07/202410/07/2024
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Analyzing Students’ Preferences for LLM-Generated Analogies'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä