Analysis of contractions in system graphs: Application to state estimation

Mohammadreza Doostmohammadian*, Themistoklis Charalambous, Miadreza Shafie-khah, Hamid R. Rabiee, Usman A. Khan

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

2 Sitaatiot (Scopus)
63 Lataukset (Pure)


Observability and estimation are closely tied to the system structure, which can be visualized as a system graph-a graph that captures the inter-dependencies within the state variables. For example, in social system graphs such inter-dependencies represent the social interactions of different individuals. It was recently shown that contractions, a key concept from graph theory, in the system graph are critical to system observability, as (at least) one state measurement in every contraction is necessary for observability. Thus, the size and number of contractions are critical in recovering for loss of observability. In this paper, the correlation between the average-size/number of contractions and the global clustering coefficient (GCC) of the system graph is studied. Our empirical results show that estimating systems with high GCC requires fewer measurements, and in case of measurement failure, there are fewer possible options to find substitute measurement that recovers the system's observability. This is significant as by tuning the GCC, we can improve the observability properties of large-scale engineered networks, such as social networks and smart grid.

OtsikkoProceedings of IEEE International Conference on Autonomous Systems, ICAS 2021
ISBN (elektroninen)978-1-7281-7289-7
DOI - pysyväislinkit
TilaJulkaistu - 6 lokak. 2021
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaIEEE International Conference on Autonomous Systems - Virtual, online, Montreal, Kanada
Kesto: 11 elok. 202113 elok. 2021


ConferenceIEEE International Conference on Autonomous Systems


Sukella tutkimusaiheisiin 'Analysis of contractions in system graphs: Application to state estimation'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.
  • Themistoklis Charalambous

    Charalambous, T., Royyan, M. & Farjam, T.


    Projekti: Academy of Finland: Other research funding

Siteeraa tätä