An Introduction to Bayesian Multilevel Models Using brms: A Case Study of Gender Effects on Vowel Variability in Standard Indonesian

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Tutkijat

Organisaatiot

  • Université Grenoble Alpes
  • Ghent University
  • Institut Universitaire de France
  • University of Münster

Kuvaus

Purpose Bayesian multilevel models are increasingly used to overcome the limitations of frequentist approaches in the analysis of complex structured data. This tutorial introduces Bayesian multilevel modeling for the specific analysis of speech data, using the brms package developed in R. Method In this tutorial, we provide a practical introduction to Bayesian multilevel modeling by reanalyzing a phonetic data set containing formant (F1 and F2) values for 5 vowels of standard Indonesian (ISO 639-3:ind), as spoken by 8 speakers (4 females and 4 males), with several repetitions of each vowel. Results We first give an introductory overview of the Bayesian framework and multilevel modeling. We then show how Bayesian multilevel models can be fitted using the probabilistic programming language Stan and the R package brms, which provides an intuitive formula syntax. Conclusions Through this tutorial, we demonstrate some of the advantages of the Bayesian framework for statistical modeling and provide a detailed case study, with complete source code for full reproducibility of the analyses ( https://osf.io/dpzcb /). Supplemental Material https://doi.org/10.23641/asha.7973822.

Yksityiskohdat

AlkuperäiskieliEnglanti
Sivut1225-1242
Sivumäärä18
JulkaisuJournal of Speech, Language, and Hearing Research
Vuosikerta62
Numero5
TilaJulkaistu - 21 toukokuuta 2019
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

ID: 34722820