An Extended Framework of Privacy-Preserving Computation with Flexible Access Control

W. Ding, Rui Hu, Zheng Yan, Xinren Qian, Robert H. Deng, L. T. Yang, M. Dong

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

1 Sitaatiot (Scopus)
30 Lataukset (Pure)

Abstrakti

Cloud computing offers various services based on outsourced data by utilizing its huge volume of resources and great computation capability. However, it also makes users lose full control over their data. To avoid the leakage of user data privacy, encrypted data are preferred to be uploaded and stored in the cloud, which unfortunately complicates data analysis and access control. In particular, few existing works consider the fine-grained access control over the computational results from ciphertexts. Though our previous work proposed a framework to support several basic computations (such as addition, multiplication and comparison Ding2017) with flexible access control, privacy-preserving division calculations over encrypted data, as a crucial operation in many statistical processes and machine learning algorithms, is neglected. In this paper, we propose four privacy-preserving division computation schemes with flexible access control to fill this gap, which can adapt to various application scenarios. Furthermore, we extend a division scheme over encrypted integers to support privacy-preserving division over multiple data types including fixed-point numbers and fractional numbers. Finally, we give their security proof and show their efficiency and superiority through comprehensive simulations and comparisons with existing work.
AlkuperäiskieliEnglanti
Artikkeli8894534
Sivut918-930
JulkaisuIEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT
Vuosikerta17
Numero2
Varhainen verkossa julkaisun päivämäärä2019
DOI - pysyväislinkit
TilaJulkaistu - kesäkuuta 2020
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki Sukella tutkimusaiheisiin 'An Extended Framework of Privacy-Preserving Computation with Flexible Access Control'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

  • Projektit

    TruSoNet: Luottamuksen digitointi kaikkialla läsnäolevassa sosiaalisessa verkossa

    Zhang, L., Liu, S. & Yan, Z.

    01/09/201725/09/2020

    Projekti: Academy of Finland: Other research funding

    Luottamuksen digitointi kaikkialla läsnäolevassa sosiaalisessa verkossa

    Yan, Z.

    01/09/201731/08/2022

    Projekti: Academy of Finland: Other research funding

    Siteeraa tätä