An adaptive penalty multi-pitch estimator with self-regularization

F. Elvander*, T. Kronvall, S. I. Adalbjornsson, A. Jakobsson

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

Abstrakti

This work treats multi-pitch estimation, and in particular the common misclassification issue wherein the pitch at half the true fundamental frequency, the sub-octave, is chosen instead of the true pitch. Extending on current group LASSO-based methods for pitch estimation, this work introduces an adaptive total variation penalty, which enforces both group- and block sparsity, as well as deals with errors due to sub-octaves. Also presented is a scheme for signal adaptive dictionary construction and automatic selection of the regularization parameters. Used together with this scheme, the proposed method is shown to yield accurate pitch estimates when evaluated on synthetic speech data. The method is shown to perform as good as, or better than, current state-of-the-art sparse methods while requiring fewer tuning parameters than these, as well as several conventional pitch estimation methods, even when these are given oracle model orders. When evaluated on a set of ten musical pieces, the method shows promising results for separating multi-pitch signals. (C) 2016 Elsevier B.V. All rights reserved.

AlkuperäiskieliEnglanti
Sivut56-70
Sivumäärä15
JulkaisuSignal Processing
Vuosikerta127
DOI - pysyväislinkit
TilaJulkaistu - lokak. 2016
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'An adaptive penalty multi-pitch estimator with self-regularization'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä