TY - JOUR
T1 - Alignment between Heart Rate Variability from Fitness Trackers and Perceived Stress: Perspectives from a Large-Scale in Situ Longitudinal Study of Information Workers
AU - Martinez, Gonzalo J.
AU - Grover, Ted
AU - Mattingly, Stephen M.
AU - Mark, Gloria
AU - D’Mello, Sidney
AU - Aledavood, Talayeh
AU - Akbar, Fatema
AU - Robles-Granda, Pablo
AU - Striegel, Aaron
N1 - Funding Information:
This paper is based upon work supported in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (2017-17042800007), the National Science Foundation (SES 2030599 and SES 1928612), and the National Institute of Health (R21NR018972). The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Office of the Director of National Intelligence, Intelligence Advanced Research Projects Activity, or the US government. The US government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation therein.
Publisher Copyright:
©Gonzalo J Martinez, Ted Grover, Stephen M Mattingly, Gloria Mark, Sidney D’Mello, Talayeh Aledavood, Fatema Akbar, Pablo Robles-Granda, Aaron Striegel.
PY - 2022/7/1
Y1 - 2022/7/1
N2 - Background: Stress can have adverse effects on health and well-being. Informed by laboratory findings that heart rate variability (HRV) decreases in response to an induced stress response, recent efforts to monitor perceived stress in the wild have focused on HRV measured using wearable devices. However, it is not clear that the well-established association between perceived stress and HRV replicates in naturalistic settings without explicit stress inductions and research-grade sensors. Objective: This study aims to quantify the strength of the associations between HRV and perceived daily stress using wearable devices in real-world settings. Methods: In the main study, 657 participants wore a fitness tracker and completed 14,695 ecological momentary assessments (EMAs) assessing perceived stress, anxiety, positive affect, and negative affect across 8 weeks. In the follow-up study, approximately a year later, 49.8% (327/657) of the same participants wore the same fitness tracker and completed 1373 EMAs assessing perceived stress at the most stressful time of the day over a 1-week period. We used mixed-effects generalized linear models to predict EMA responses from HRV features calculated over varying time windows from 5 minutes to 24 hours. Results: Across all time windows, the models explained an average of 1% (SD 0.5%; marginal R2) of the variance. Models using HRV features computed from an 8 AM to 6 PM time window (namely work hours) outperformed other time windows using HRV features calculated closer to the survey response time but still explained a small amount (2.2%) of the variance. HRV features that were associated with perceived stress were the low frequency to high frequency ratio, very low frequency power, triangular index, and SD of the averages of normal-to-normal intervals. In addition, we found that although HRV was also predictive of other related measures, namely, anxiety, negative affect, and positive affect, it was a significant predictor of stress after controlling for these other constructs. In the follow-up study, calculating HRV when participants reported their most stressful time of the day was less predictive and provided a worse fit (R2=0.022) than the work hours time window (R2=0.032). Conclusions: A significant but small relationship between perceived stress and HRV was found. Thus, although HRV is associated with perceived stress in laboratory settings, the strength of that association diminishes in real-life settings. HRV might be more reflective of perceived stress in the presence of specific and isolated stressors and research-grade sensing. Relying on wearable-derived HRV alone might not be sufficient to detect stress in naturalistic settings and should not be considered a proxy for perceived stress but rather a component of a complex phenomenon.
AB - Background: Stress can have adverse effects on health and well-being. Informed by laboratory findings that heart rate variability (HRV) decreases in response to an induced stress response, recent efforts to monitor perceived stress in the wild have focused on HRV measured using wearable devices. However, it is not clear that the well-established association between perceived stress and HRV replicates in naturalistic settings without explicit stress inductions and research-grade sensors. Objective: This study aims to quantify the strength of the associations between HRV and perceived daily stress using wearable devices in real-world settings. Methods: In the main study, 657 participants wore a fitness tracker and completed 14,695 ecological momentary assessments (EMAs) assessing perceived stress, anxiety, positive affect, and negative affect across 8 weeks. In the follow-up study, approximately a year later, 49.8% (327/657) of the same participants wore the same fitness tracker and completed 1373 EMAs assessing perceived stress at the most stressful time of the day over a 1-week period. We used mixed-effects generalized linear models to predict EMA responses from HRV features calculated over varying time windows from 5 minutes to 24 hours. Results: Across all time windows, the models explained an average of 1% (SD 0.5%; marginal R2) of the variance. Models using HRV features computed from an 8 AM to 6 PM time window (namely work hours) outperformed other time windows using HRV features calculated closer to the survey response time but still explained a small amount (2.2%) of the variance. HRV features that were associated with perceived stress were the low frequency to high frequency ratio, very low frequency power, triangular index, and SD of the averages of normal-to-normal intervals. In addition, we found that although HRV was also predictive of other related measures, namely, anxiety, negative affect, and positive affect, it was a significant predictor of stress after controlling for these other constructs. In the follow-up study, calculating HRV when participants reported their most stressful time of the day was less predictive and provided a worse fit (R2=0.022) than the work hours time window (R2=0.032). Conclusions: A significant but small relationship between perceived stress and HRV was found. Thus, although HRV is associated with perceived stress in laboratory settings, the strength of that association diminishes in real-life settings. HRV might be more reflective of perceived stress in the presence of specific and isolated stressors and research-grade sensing. Relying on wearable-derived HRV alone might not be sufficient to detect stress in naturalistic settings and should not be considered a proxy for perceived stress but rather a component of a complex phenomenon.
KW - ecological momentary assessment
KW - EMA
KW - fitness tracker
KW - heart rate variability
KW - HRV
KW - perceived stress
KW - stress measurement
KW - wearables
UR - http://www.scopus.com/inward/record.url?scp=85136958662&partnerID=8YFLogxK
U2 - 10.2196/33754
DO - 10.2196/33754
M3 - Article
AN - SCOPUS:85136958662
SN - 2292-9495
VL - 9
SP - 1
EP - 21
JO - JMIR Human Factors
JF - JMIR Human Factors
IS - 3
M1 - e33754
ER -