Aliasing Reduction in Clipped Signals

Fabián Esqueda, Stefan Bilbao, Vesa Välimäki

    Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

    42 Sitaatiot (Scopus)

    Abstrakti

    An aliasing reduction method for hard-clipped sampled signals is proposed. Clipping in the digital domain causes a large amount of harmonic distortion, which is not bandlimited, so spectral components generated above the Nyquist limit are reflected to the baseband and mixed with the signal. A model for an ideal bandlimited ramp function is derived, which leads to a postprocessing method to reduce aliasing. A number of samples in the neighborhood of a clipping point in the waveform are modified to simulate the Gibbs phenomenon. This novel method requires estimation of the fractional delay of the clipping point between samples and the first derivative of the original signal at that point. Two polynomial approximations of the bandlimited ramp function are suggested for practical implementation. Validation tests using sinusoidal, triangular, and harmonic signals show that the proposed method achieves high accuracy in aliasing reduction. The proposed 2-point and 4-point polynomial correction methods can improve the signal-to-noise ratio by 12 and 20 dB in average, respectively, and are more computationally efficient and cause less latency than oversampling, which is the standard approach to aliasing reduction. An additional advantage of the polynomial correction methods over oversampling is that they do not introduce overshoot beyond the clipping level in the waveform. The proposed techniques are useful in audio and other fields of signal processing where digital signal values must be clipped but aliasing cannot be tolerated.

    AlkuperäiskieliEnglanti
    Artikkeli7499828
    Sivut5255-5267
    Sivumäärä13
    JulkaisuIEEE Transactions on Signal Processing
    Vuosikerta64
    Numero20
    DOI - pysyväislinkit
    TilaJulkaistu - 15 lokak. 2016
    OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

    Sormenjälki

    Sukella tutkimusaiheisiin 'Aliasing Reduction in Clipped Signals'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä