Algorithms for finding maximum transitive subtournaments

Lasse Kiviluoto, Patric R J Östergård*, Vesa P. Vaskelainen

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

1 Sitaatiot (Scopus)

Abstrakti

The problem of finding a maximum clique is a fundamental problem for undirected graphs, and it is natural to ask whether there are analogous computational problems for directed graphs. Such a problem is that of finding a maximum transitive subtournament in a directed graph. A tournament is an orientation of a complete graph; it is transitive if the occurrence of the arcs xy and yz implies the occurrence of xz. Searching for a maximum transitive subtournament in a directed graph D is equivalent to searching for a maximum induced acyclic subgraph in the complement of D, which in turn is computationally equivalent to searching for a minimum feedback vertex set in the complement of D. This paper discusses two backtrack algorithms and a Russian doll search algorithm for finding a maximum transitive subtournament, and reports experimental results of their performance.

AlkuperäiskieliEnglanti
Sivut802-814
Sivumäärä13
JulkaisuJournal of Combinatorial Optimization
Vuosikerta31
Numero2
DOI - pysyväislinkit
TilaJulkaistu - 1 helmik. 2016
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Algorithms for finding maximum transitive subtournaments'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä