Abstrakti
Understanding the boundary of the set of matrices of nonnegative rank at most r is important for applications in nonconvex optimization. The Zariski closure of the boundary of the set of matrices of nonnegative rank at most 3 is reducible. We give a minimal generating set for the ideal of each irreducible component. In fact, this generating set is a Gröbner basis with respect to the graded reverse lexicographic order. This solves a conjecture by Robeva, Sturmfels and the last author.
Alkuperäiskieli | Englanti |
---|---|
Sivut | 62-80 |
Sivumäärä | 19 |
Julkaisu | Linear Algebra and Its Applications |
Vuosikerta | 508 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 1 marrask. 2016 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |