AI-terity 2.0: An Autonomous NIME Featuring GANSpaceSynth Deep Learning Model

Koray Tahiroğlu, Miranda Kastemaa, Oskar Koli

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

Abstrakti

In this paper we present the recent developments in the AI-terity instrument. AI-terity is a deformable, non-rigid musical instrument that comprises a particular artificial intelligence (AI) method for generating audio samples for real-time audio synthesis. As an improvement, we developed the control interface structure with additional sensor hardware. In addition, we implemented a new hybrid deep learning architecture, GANSpaceSynth, in which we applied the GANSpace method on the GANSynth model. Following the deep learning model improvement, we developed new autonomous features for the instrument that aim at keeping the musician in an active and uncertain state of exploration. Through these new features, the instrument enables more accurate control on GAN latent space. Further, we intend to investigate the current developments through a musical composition that idiomatically reflects the new autonomous features of the AI-terity instrument. We argue that the present technology of AI is suitable for enabling alternative autonomous features in audio domain for the creative practices of musicians.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the International Conference on New Interfaces for Musical Expression
KustantajaInternational Conference on New Interfaces for Musical Expression
Vuosikerta2021
DOI - pysyväislinkit
TilaJulkaistu - 15 kesäkuuta 2021
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaInternational Conference on New Interfaces for Musical Expression - Shanghai, Kiina
Kesto: 15 kesäkuuta 202118 kesäkuuta 2021
http://nime2021.org/

Julkaisusarja

Nimi
ISSN (elektroninen)2220-4806

Conference

ConferenceInternational Conference on New Interfaces for Musical Expression
LyhennettäNIME
Maa/AlueKiina
KaupunkiShanghai
Ajanjakso15/06/202118/06/2021
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'AI-terity 2.0: An Autonomous NIME Featuring GANSpaceSynth Deep Learning Model'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä