Projekteja vuodessa
Abstrakti
Developing a reinforcement learning (RL) agent often involves identifying values for numerous parameters, covering the policy, reward function, environment, and agent-internal architecture. Since these parameters are interrelated in complex ways, optimizing them is a black-box problem that proves especially challenging for nonexperts. Although existing optimization-as-a-service platforms (e.g., Vizier and Optuna) can handle such problems, they are impractical for RL systems, since the need for manual user mapping of each parameter to distinct components makes the effort cumbersome. It also requires understanding of the optimization process, limiting the systems' application beyond the machine learning field and restricting access in areas such as cognitive science, which models human decision-making. To tackle these challenges, the paper presents AgentForge, a flexible low-code platform to optimize any parameter set across an RL system. Available at https://github.com/feferna/AgentForge, it allows an optimization problem to be defined in a few lines of code and handed to any of the interfaced optimizers. With AgentForge, the user can optimize the parameters either individually or jointly. The paper presents an evaluation of its performance for a challenging vision-based RL problem.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings of the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025) |
Julkaisupaikka | Porto |
Kustantaja | SciTePress |
Sivut | 351-358 |
Sivumäärä | 8 |
Vuosikerta | 1 |
ISBN (painettu) | 978-989-758-737-5 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2025 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | International Conference on Agents and Artificial Intelligence - Vila Galé Porto hotel, Porto, Portugali Kesto: 23 helmik. 2025 → 25 helmik. 2025 Konferenssinumero: 17 https://icaart.scitevents.org/ |
Julkaisusarja
Nimi | ICAART |
---|---|
ISSN (elektroninen) | 2184-433X |
Conference
Conference | International Conference on Agents and Artificial Intelligence |
---|---|
Lyhennettä | ICAART |
Maa/Alue | Portugali |
Kaupunki | Porto |
Ajanjakso | 23/02/2025 → 25/02/2025 |
www-osoite |
Sormenjälki
Sukella tutkimusaiheisiin 'AgentForge: A Flexible Low-Code Platform for Reinforcement Learning Agent Design'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.-
AU: Artificial User
Oulasvirta, A. (Vastuullinen tutkija)
01/10/2024 → 30/09/2029
Projekti: EU Horizon Europe ERC
-
-: Finnish Center for Artificial Intelligence
Kaski, S. (Vastuullinen tutkija)
01/01/2019 → 31/12/2022
Projekti: Academy of Finland: Other research funding