AgentForge: A Flexible Low-Code Platform for Reinforcement Learning Agent Design

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

1 Lataukset (Pure)

Abstrakti

Developing a reinforcement learning (RL) agent often involves identifying values for numerous parameters, covering the policy, reward function, environment, and agent-internal architecture. Since these parameters are interrelated in complex ways, optimizing them is a black-box problem that proves especially challenging for nonexperts. Although existing optimization-as-a-service platforms (e.g., Vizier and Optuna) can handle such problems, they are impractical for RL systems, since the need for manual user mapping of each parameter to distinct components makes the effort cumbersome. It also requires understanding of the optimization process, limiting the systems' application beyond the machine learning field and restricting access in areas such as cognitive science, which models human decision-making. To tackle these challenges, the paper presents AgentForge, a flexible low-code platform to optimize any parameter set across an RL system. Available at https://github.com/feferna/AgentForge, it allows an optimization problem to be defined in a few lines of code and handed to any of the interfaced optimizers. With AgentForge, the user can optimize the parameters either individually or jointly. The paper presents an evaluation of its performance for a challenging vision-based RL problem.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025)
JulkaisupaikkaPorto
KustantajaSciTePress
Sivut351-358
Sivumäärä8
Vuosikerta1
ISBN (painettu)978-989-758-737-5
DOI - pysyväislinkit
TilaJulkaistu - 2025
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Agents and Artificial Intelligence - Vila Galé Porto hotel, Porto, Portugali
Kesto: 23 helmik. 202525 helmik. 2025
Konferenssinumero: 17
https://icaart.scitevents.org/

Julkaisusarja

NimiICAART
ISSN (elektroninen)2184-433X

Conference

ConferenceInternational Conference on Agents and Artificial Intelligence
LyhennettäICAART
Maa/AluePortugali
KaupunkiPorto
Ajanjakso23/02/202525/02/2025
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'AgentForge: A Flexible Low-Code Platform for Reinforcement Learning Agent Design'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.
  • AU: Artificial User

    Oulasvirta, A. (Vastuullinen tutkija)

    01/10/202430/09/2029

    Projekti: EU Horizon Europe ERC

  • -: Finnish Center for Artificial Intelligence

    Kaski, S. (Vastuullinen tutkija)

    01/01/201931/12/2022

    Projekti: Academy of Finland: Other research funding

Siteeraa tätä