Affordance Learning for End-to-End Visuomotor Robot Control

Aleksi Hamalainen, Karol Arndt, Ali Ghadirzadeh, Ville Kyrki

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

4 Sitaatiot (Scopus)

Abstrakti

Training end-to-end deep robot policies requires a lot of domain-, task-, and hardware-specific data, which is often costly to provide. In this work, we propose to tackle this issue by employing a deep neural network with a modular architecture, consisting of separate perception, policy, and trajectory parts. Each part of the system is trained fully on synthetic data or in simulation. The data is exchanged between parts of the system as low-dimensional latent representations of affordances and trajectories. The performance is then evaluated in a zero-shot transfer scenario using Franka Panda robot arm. Results demonstrate that a low-dimensional representation of scene affordances extracted from an RGB image is sufficient to successfully train manipulator policies. We also introduce a method for affordance dataset generation, which is easily generalizable to new tasks, objects and environments, and requires no manual pixel labeling.

AlkuperäiskieliEnglanti
OtsikkoProceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2019
KustantajaIEEE
Sivut1781-1788
Sivumäärä8
ISBN (elektroninen)9781728140049
DOI - pysyväislinkit
TilaJulkaistu - 1 marraskuuta 2019
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaIEEE/RSJ International Conference on Intelligent Robots and Systems - The Venetian Macao, Macau, Kiina
Kesto: 4 marraskuuta 20198 marraskuuta 2019
https://www.iros2019.org/

Julkaisusarja

NimiProceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
KustantajaIEEE
ISSN (painettu)2153-0858
ISSN (elektroninen)2153-0866

Conference

ConferenceIEEE/RSJ International Conference on Intelligent Robots and Systems
LyhennettäIROS
Maa/AlueKiina
KaupunkiMacau
Ajanjakso04/11/201908/11/2019
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Affordance Learning for End-to-End Visuomotor Robot Control'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä