Abstrakti
We propose estimating the scale parameter (mean of the eigenvalues) of
the scatter matrix of an unspecified elliptically symmetric distribution
using weights obtained by solving Tyler's M-estimator of the scatter
matrix. The proposed Tyler's weights-based estimate (TWE) of scale is
then used to construct an affine equivariant Tyler's M-estimator as a
weighted sample covariance matrix using normalized Tyler's weights. We
then develop a unified framework for estimating the unknown tail
parameter of the elliptical distribution (such as the degrees of freedom
(d.o.f.)
ν
of the multivariate
t
(MVT) distribution). Using the proposed TWE of scale, a new robust
estimate of the d.o.f. parameter of MVT distribution is proposed with
excellent performance in heavy-tailed scenarios, outperforming other
competing methods. R-package is available that implements the proposed
method.
Alkuperäiskieli | Englanti |
---|---|
Sivut | 1017-1021 |
Julkaisu | IEEE Signal Processing Letters |
Vuosikerta | 30 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 3 elok. 2023 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |