Adversarial examples for extreme multilabel text classification

Mohammadreza Mohammadnia Qaraei, Rohit Babbar*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

45 Lataukset (Pure)

Abstrakti

Extreme Multilabel Text Classification (XMTC) is a text classification problem in which, (i) the output space is extremely large, (ii) each data point may have multiple positive labels, and (iii) the data follows a strongly imbalanced distribution. With applications in recommendation systems and automatic tagging of web-scale documents, the research on XMTC has been focused on improving prediction accuracy and dealing with imbalanced data. However, the robustness of deep learning based XMTC models against adversarial examples has been largely underexplored. In this paper, we investigate the behaviour of XMTC models under adversarial attacks. To this end, first, we define adversarial attacks in multilabel text classification problems. We categorize attacking multilabel text classifiers as (a) positive-to-negative, where the target positive label should fall out of top-k predicted labels, and (b) negative-to-positive, where the target negative label should be among the top-k predicted labels. Then, by experiments on APLC-XLNet and AttentionXML, we show that XMTC models are highly vulnerable to positive-to-negative attacks but more robust to negative-to-positive ones. Furthermore, our experiments show that the success rate of positive-to-negative adversarial attacks has an imbalanced distribution. More precisely, tail classes are highly vulnerable to adversarial attacks for which an attacker can generate adversarial samples with high similarity to the actual data-points. To overcome this problem, we explore the effect of rebalanced loss functions in XMTC where not only do they increase accuracy on tail classes, but they also improve the robustness of these classes against adversarial attacks. The code for our experiments is available at https://github.com/xmc-aalto/adv-xmtc.
AlkuperäiskieliEnglanti
Sivut4539-4563
Sivumäärä25
JulkaisuMachine Learning
Vuosikerta111
Numero12
Varhainen verkossa julkaisun päivämäärä4 marrask. 2022
DOI - pysyväislinkit
TilaJulkaistu - jouluk. 2022
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Adversarial examples for extreme multilabel text classification'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä