Advanced Materials through Assembly of Nanocelluloses

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Tutkijat

Organisaatiot

  • University of Duisburg-Essen
  • Aalto University

Kuvaus

There is an emerging quest for lightweight materials with excellent mechanical properties and economic production, while still being sustainable and functionalizable. They could form the basis of the future bioeconomy for energy and material efficiency. Cellulose has long been recognized as an abundant polymer. Modified celluloses were, in fact, among the first polymers used in technical applications; however, they were later replaced by petroleum-based synthetic polymers. Currently, there is a resurgence of interest to utilize renewable resources, where cellulose is foreseen to make again a major impact, this time in the development of advanced materials. This is because of its availability and properties, as well as economic and sustainable production. Among cellulose-based structures, cellulose nanofibrils and nanocrystals display nanoscale lateral dimensions and lengths ranging from nanometers to micrometers. Their excellent mechanical properties are, in part, due to their crystalline assembly via hydrogen bonds. Owing to their abundant surface hydroxyl groups, they can be easily modified with nanoparticles, (bio)polymers, inorganics, or nanocarbons to form functional fibers, films, bulk matter, and porous aerogels and foams. Here, some of the recent progress in the development of advanced materials within this rapidly growing field is reviewed.

Yksityiskohdat

AlkuperäiskieliEnglanti
Artikkeli1703779
JulkaisuAdvanced Materials
Vuosikerta30
Numero24
Varhainen verkossa julkaisun päivämäärä2018
TilaJulkaistu - kesäkuuta 2018
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Lataa tilasto

Ei tietoja saatavilla

ID: 18373334