Projekteja vuodessa
Abstrakti
A large part of the refining heat production in the thermomechanical pulp mill can be recovered to supply the paper machine heat demand. This study introduces a novel approach for the heat integration of a thermomechanical pulp mill and paper machine using Energy Hub. An Energy Hub consisting of a steam generator heat pump and the electric boiler is integrated with the thermomechanical pulp mill to provide the heating demand of the paper machine. The advanced cost-efficient design and operation of the Energy Hub are investigated in this research by integrating thermo-economic analysis, reliability & availability assessment, and load profile prediction. The thermo-economic analysis combines economics and thermodynamics, which is necessary for energy system unit commitments. Reliability assessment will lead to more accurate modeling of real-life system operating conditions since system components' availability is considered in the design process. Load profile prediction estimates the Energy Hub load for the next hour, which helps with the optimal operation of the Energy Hub. Different state-of-the-art long-short-term memory (LSTM) neural network models have been developed to achieve the best time series model for refining heat prediction in the thermomechanical pulp mill. Results show that all the time series models are effective for refining heat prediction, while Bidirectional LSTM appears to perform better than others with the correlation coefficient and root mean square error of 0.9 and 0.15, respectively. In addition, the proposed Energy Hub design approach is compared with the conventional design method. The proposed design method offers a robust design that isn't impacted by unsupplied demand penalty rates. Depending on the penalty rates, the total system cost could decrease by 14%-28% utilizing the proposed design method.
Alkuperäiskieli | Englanti |
---|---|
Artikkeli | 120751 |
Sivumäärä | 17 |
Julkaisu | Applied Thermal Engineering |
Vuosikerta | 230, Part A |
DOI - pysyväislinkit | |
Tila | Julkaistu - 25 heinäk. 2023 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Sormenjälki
Sukella tutkimusaiheisiin 'Advanced design and operation of Energy Hub for forest industry using reliability assessment'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.-
OptStorage/Laukkanen: Experimental and Artificial-Intelligence-Based Modeling of Optimal Efficiency for Renewable Long-Term Heat Storages
Laukkanen, T. (Vastuullinen tutkija), Holmberg, H. (Projektin jäsen), Talebjedi, B. (Projektin jäsen) & Olmedilla, H. (Projektin jäsen)
EU The Recovery and Resilience Facility (RRF)
01/01/2023 → 31/12/2025
Projekti: Academy of Finland: Other research funding
-
Metsäteollisuuden rakennemuutoksen vaikutus energiatehokkuuteen ja CO2 päästöjen vähentämiseen
Laukkanen, T. (Vastuullinen tutkija), Holmberg, H. (Projektin jäsen) & Talebjedi, B. (Projektin jäsen)
01/09/2018 → 31/08/2022
Projekti: Academy of Finland: Other research funding
Lehtileikkeet
-
New Investment Study Findings Have Been Reported by Researchers at Aalto University (Advanced Design and Operation of Energy Hub for Forest Industry Using Reliability Assessment)
Holmberg, H., Syri, S. & Laukkanen, T.
28/07/2023
1 kohde/ Medianäkyvyys
Lehdistö/media: Esiintyminen mediassa