Abstrakti
We present the first result for kernel regression where the procedure adapts locally at a point x to both the unknown local dimension of the metric space χ and the unknown Hölder-continuity of the regression function at x. The result holds with high probability simultaneously at all points x in a general metric space χ of unknown structure.
Alkuperäiskieli | Englanti |
---|---|
Julkaisu | Advances in Neural Information Processing Systems |
Tila | Julkaistu - 2013 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE Conference on Neural Information Processing Systems - Lake Tahoe, Yhdysvallat Kesto: 5 jouluk. 2013 → 10 jouluk. 2013 |