Adaptive reference elements via harmonic extensions and associated inner modes

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

Abstrakti

A non-intrusive extension to the standard p-version of the finite element method is proposed. Meshes with hanging nodes are handled by adapting the reference elements so that the resulting discretisation is always conforming. The shape functions on these adaptive reference elements are not polynomials, but either harmonic extensions of the boundary restrictions of the standard shape functions or solutions to a local Poisson problem. The numerical experiments are taken from computational function theory and the efficiency of the proposed extension resulting in exponential convergence in the quantities of interest is demonstrated.

AlkuperäiskieliEnglanti
Sivut2272-2288
Sivumäärä17
JulkaisuComputers and Mathematics with Applications
Vuosikerta80
Numero11
DOI - pysyväislinkit
TilaJulkaistu - 1 joulukuuta 2020
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki Sukella tutkimusaiheisiin 'Adaptive reference elements via harmonic extensions and associated inner modes'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä