Adaptive Iterative Learning Control for Discrete-Time Nonlinear Systems without Knowing the Control Gain Signs

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

202 Lataukset (Pure)

Abstrakti

An adaptive iterative learning control method is proposed for a class of nonlinear strict-feedback discrete-time systems with random initial conditions and iteration-varying desired trajectories. An n-step ahead predictor approach is employed to estimate the future states in the control design. Discrete Nussbaum gain method is utilized to deal with the lack of a priori knowledge of control directions. The proposed control algorithm guarantees the boundedness of all the signals in the controlled system. The tracking error converges to zero asymptotically along the iterative learning axis except for beginning states affected by random initial conditions. The effectiveness of the proposed control scheme is verified through numerical simulation.
AlkuperäiskieliEnglanti
Otsikko18th Nordic Process Control Workshop, Oulu, Finland, 22-23 August, 2013
TilaJulkaistu - 2013
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa

Sormenjälki Sukella tutkimusaiheisiin 'Adaptive Iterative Learning Control for Discrete-Time Nonlinear Systems without Knowing the Control Gain Signs'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

  • Siteeraa tätä

    Yu, M., & Jämsä-Jounela, S-L. (2013). Adaptive Iterative Learning Control for Discrete-Time Nonlinear Systems without Knowing the Control Gain Signs. teoksessa 18th Nordic Process Control Workshop, Oulu, Finland, 22-23 August, 2013