Adaptive HD-sEMG decomposition: towards robust real-time decoding of neural drive

Dennis Yeung*, Francesco Negro, Ivan Vujaklija*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

1 Sitaatiot (Scopus)
43 Lataukset (Pure)

Abstrakti

Objective. Neural interfacing via decomposition of high-density surface electromyography (HD-sEMG) should be robust to signal non-stationarities incurred by changes in joint pose and contraction intensity. Approach. We present an adaptive real-time motor unit decoding algorithm and test it on HD-sEMG collected from the extensor carpi radialis brevis during isometric contractions over a range of wrist angles and contraction intensities. The performance of the algorithm was verified using high-confidence benchmark decompositions derived from concurrently recorded intramuscular electromyography. Main results. In trials where contraction conditions between the initialization and testing data differed, the adaptive decoding algorithm maintained significantly higher decoding accuracies when compared to static decoding methods. Significance. Using “gold standard” verification techniques, we demonstrate the limitations of filter re-use decoding methods and show the necessity of parameter adaptation to achieve robust neural decoding.

AlkuperäiskieliEnglanti
Artikkeli026012
JulkaisuJOURNAL OF NEURAL ENGINEERING
Vuosikerta21
Numero2
DOI - pysyväislinkit
TilaJulkaistu - 1 huhtik. 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Adaptive HD-sEMG decomposition: towards robust real-time decoding of neural drive'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä