Projekteja vuodessa
Abstrakti
We explore the use of caching both at the network edge and within User Equipment (UE) to alleviate traffic load of wireless networks. We develop a joint cache placement and delivery policy that maximizes the Quality of Service (QoS) while simultaneously minimizing backhaul load and UE power consumption, in the presence of an unknown time-variant file popularity. With file requests in a time slot being affected by download success in the previous slot, the caching system becomes a non-stationary Partial Observable Markov Decision Process (POMDP). We solve the problem in a deep reinforcement learning framework based on the Advantageous Actor-Critic (A2C) algorithm, comparing Feed Forward Neural Networks (FFNN) with a Long Short-Term Memory (LSTM) approach specifically designed to exploit the correlation of file popularity distribution across time slots. Simulation results show that using LSTM-based A2C outperforms FFNN-based A2C in terms of sample efficiency and optimality, demonstrating superior performance for the non-stationary POMDP problem. For caching at the UEs, we provide a distributed algorithm that reaches the objectives dictated by the agent controlling the network, with minimum energy consumption at the UEs, and minimum communication overhead.
Alkuperäiskieli | Englanti |
---|---|
Sivut | 81-99 |
Sivumäärä | 19 |
Julkaisu | Intelligent and Converged Networks |
Vuosikerta | 5 |
Numero | 2 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2024 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Sormenjälki
Sukella tutkimusaiheisiin 'Adaptive Cache Policy Optimization Through Deep Reinforcement Learning in Dynamic Cellular Networks'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 1 Aktiivinen
-
RILREW: Reinforcement Learning for Real-time Wireless Scheduling and Edge Caching: Theory and Algorithm Design
Tirkkonen, O., Amidzade, M., Srinivasan, A., Singh, U., Shaikh, B. & Al-Tous, H.
01/01/2022 → 31/12/2024
Projekti: Academy of Finland: Other research funding