Adaptive behavior cloning regularization for stable offline-to-online reinforcement learning

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

Offline reinforcement learning, by learning from a fixed dataset, makes it possible to learn agent behaviors without interacting with the environment. However, depending on the quality of the offline dataset, such pre-trained agents may have limited performance and would further need to be fine-tuned online by interacting with the environment. During online fine-tuning, the performance of the pre-trained agent may collapse quickly due to the sudden distribution shift from offline to online data. While constraints enforced by offline RL methods such as a behaviour cloning loss prevent this to an extent, these constraints also significantly slow down online fine-tuning by forcing the agent to stay close to the behavior policy. We propose to adaptively weigh the behavior cloning loss during online fine-tuning based on the agent's performance and training stability. Moreover, we use a randomized ensemble of Q functions to further increase the sample efficiency of online fine-tuning by performing a large number of learning updates. Experiments show that the proposed method yields state-of-the-art offline-to-online reinforcement learning performance on the popular D4RL benchmark.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the European Symposium on Artificial Neural Networks, 2022
KustantajaEuropean Symposium on Artificial Neural Networks (ESANN)
Sivumäärä6
ISBN (elektroninen)9782875870841
DOI - pysyväislinkit
TilaJulkaistu - 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaEuropean Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning - Bruges, Belgia
Kesto: 5 lokak. 20227 lokak. 2022
Konferenssinumero: 30

Conference

ConferenceEuropean Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
LyhennettäESANN
Maa/AlueBelgia
KaupunkiBruges
Ajanjakso05/10/202207/10/2022

Sormenjälki

Sukella tutkimusaiheisiin 'Adaptive behavior cloning regularization for stable offline-to-online reinforcement learning'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä