Achieving Emission-Reduction Goals: Multi-Period Power-System Expansion under Short-Term Operational Uncertainty

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

2 Sitaatiot (Scopus)
77 Lataukset (Pure)


Stochastic adaptive robust optimization is capable of handling short-term uncertainties in demand and variable renewable-energy sources that affect investment in generation and transmission capacity. We build on this setting by considering a multi-year investment horizon for finding the optimal plan for generation and transmission capacity expansion while reducing greenhouse gas emissions. In addition, we incorporate multiple hours in power-system operations to capture hydropower operations and flexibility requirements for utilizing variable renewable-energy sources such as wind and solar power. To improve the computational performance of existing exact methods for this problem, we employ Benders decomposition and solve a mixed-integer quadratic programming problem to avoid computationally expensive big-M linearizations. The results for a realistic case study for the Nordic and Baltic region indicate which investments in transmission, wind power, and flexible generation capacity are required for reducing greenhouse gas emissions. Through out-of-sample experiments, we show that the stochastic adaptive robust model leads to lower expected costs than a stochastic programming model under increasingly stringent environmental considerations.
JulkaisuIEEE Transactions on Power Systems
Varhainen verkossa julkaisun päivämäärä2023
DOI - pysyväislinkit
TilaJulkaistu - 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä


Sukella tutkimusaiheisiin 'Achieving Emission-Reduction Goals: Multi-Period Power-System Expansion under Short-Term Operational Uncertainty'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä