Projekteja vuodessa
Abstrakti
We present a quantitatively accurate machine-learning (ML) model for the computational prediction of core-electron binding energies, from which X-ray photoelectron spectroscopy (XPS) spectra can be readily obtained. Our model combines density functional theory (DFT) with GW and uses kernel ridge regression for the ML predictions. We apply the new approach to disordered materials and small molecules containing carbon, hydrogen, and oxygen and obtain qualitative and quantitative agreement with experiment, resolving spectral features within 0.1 eV of reference experimental spectra. The method only requires the user to provide a structural model for the material under study to obtain an XPS prediction within seconds. Our new tool is freely available online through the XPS Prediction Server.
Alkuperäiskieli | Englanti |
---|---|
Sivut | 6240−6254 |
Julkaisu | Chemistry of Materials |
Vuosikerta | 34 |
Numero | 14 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 13 heinäk. 2022 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Sormenjälki
Sukella tutkimusaiheisiin 'Accurate Computational Prediction of Core-Electron Binding Energies in Carbon-Based Materials: A Machine-Learning Model Combining Density-Functional Theory and GW'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.-
NEXTCELL: Next generation interatomic potentials to simulate new cellulose based materials
Caro, M. (Vastuullinen tutkija)
01/09/2020 → 31/08/2025
Projekti: Academy of Finland: Other research funding
-
LEARNSOLAR: Rinke-LearnSolar
Rinke, P. (Vastuullinen tutkija)
01/09/2020 → 31/08/2024
Projekti: Academy of Finland: Other research funding
-
-: Hiilimonoksidin, metaanin ja metanolin tuotanto hiilidioksidin sähkökemiallisella pelkistyksellä
Caro, M. (Vastuullinen tutkija)
01/01/2020 → 31/12/2023
Projekti: Academy of Finland: Other research funding
Laitteet
Lehtileikkeet
-
Aalto University: Machine Learning Gives Material Science Researchers a Peek at the Answer Key
22/07/2022
1 kohde/ Medianäkyvyys
Lehdistö/media: Esiintyminen mediassa
-
A model trained to predict spectroscopic profiles helps to decipher the structure of materials
21/07/2022
1 kohde/ Medianäkyvyys
Lehdistö/media: Esiintyminen mediassa