Accelerated lignocellulosic molecule adsorption structure determination

Joakim Jestilä*, Nian Wu, Fabio Priante, Adam Foster

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

25 Lataukset (Pure)

Abstrakti

Here, we present a study combining Bayesian optimization structural inference with the machine learning interatomic potential Neural Equivariant Interatomic Potential (NequIP) to accelerate and enable the study of the adsorption of the conformationally flexible lignocellulosic molecules β-d-xylose and 1,4-β-d-xylotetraose on a copper surface. The number of structure evaluations needed to map out the relevant potential energy surfaces are reduced by Bayesian optimization, while NequIP minimizes the time spent on each evaluation, ultimately resulting in cost-efficient and reliable sampling of large systems and configurational spaces. Although the applicability of Bayesian optimization for the conformational analysis of the more flexible xylotetraose molecule is restricted by the sample complexity bottleneck, the latter can be effectively bypassed with external conformer search tools, such as the Conformer-Rotamer Ensemble Sampling Tool, facilitating the subsequent lower-dimensional global minimum adsorption structure determination. Finally, we demonstrate the applicability of the described approach to find adsorption structures practically equivalent to the density functional theory counterparts at a fraction of the computational cost.
AlkuperäiskieliEnglanti
Sivut2297-2312
JulkaisuJournal of Chemical Theory and Computation
Vuosikerta20
Numero5
Varhainen verkossa julkaisun päivämäärä26 helmik. 2024
DOI - pysyväislinkit
TilaJulkaistu - 12 maalisk. 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Accelerated lignocellulosic molecule adsorption structure determination'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä