4 Sitaatiot (Scopus)
49 Lataukset (Pure)

Abstrakti

Approximate Bayesian computation (ABC) has advanced in two decades from a seminal idea to a practically applicable inference tool for simulator-based statistical models, which are becoming increasingly popular in many research domains. The computational feasibility of ABC for practical applications has been recently boosted by adopting techniques from machine learning to build surrogate models for the approximate likelihood or posterior and by the introduction of a general-purpose software platform with several advanced features, including automated parallelisation. Here we demonstrate the strengths of the advances in ABC by going beyond the typical benchmark examples and considering real applications in astronomy, infectious disease epidemiology, personalised cancer therapy and financial prediction. We anticipate that the emerging success of ABC in producing actual added value and quantitative insights in the real world will continue to inspire a plethora of further applications across different fields of science, social science and technology.

AlkuperäiskieliEnglanti
Sivut243-268
JulkaisuInternational Statistical Review
Vuosikerta91
Numero2
Varhainen verkossa julkaisun päivämäärä17 lokak. 2022
DOI - pysyväislinkit
TilaJulkaistu - elok. 2023
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'ABC of the future'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä