A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows

Boris Georgiev, Dominic W. Pesce, Avery E. Broderick, George N. Wong, Vedant Dhruv, Maciek Wielgus, Charles F. Gammie, Chi Kwan Chan, Koushik Chatterjee, Razieh Emami, Yosuke Mizuno, Roman Gold, Christian M. Fromm, Angelo Ricarte, Doosoo Yoon, Abhishek V. Joshi, Ben Prather, Alejandro Cruz-Osorio, Michael D. Johnson, Oliver PorthHéctor Olivares, Ziri Younsi, Luciano Rezzolla, Jesse Vos, Richard Qiu, Antonios Nathanail, Ramesh Narayan, Andrew Chael, Richard Anantua, Monika Moscibrodzka, Kazunori Akiyama, Antxon Alberdi, Walter Alef, Juan Carlos Algaba, Keiichi Asada, Rebecca Azulay, Uwe Bach, Anne Kathrin Baczko, David Ball, Mislav Baloković, John Barrett, Michi Bauböck, Bradford A. Benson, Dan Bintley, Lindy Blackburn, Raymond Blundell, Dong Jin Kim, Venkatessh Ramakrishnan, Tuomas Savolainen, Jan Wagner, Event Horizon Telescope Collaboration

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

10 Sitaatiot (Scopus)
17 Lataukset (Pure)

Abstrakti

We present a framework for characterizing the spatiotemporal power spectrum of the variability expected from the horizon-scale emission structure around supermassive black holes, and we apply this framework to a library of general relativistic magnetohydrodynamic (GRMHD) simulations and associated general relativistic ray-traced images relevant for Event Horizon Telescope (EHT) observations of Sgr A*. We find that the variability power spectrum is generically a red-noise process in both the temporal and spatial dimensions, with the peak in power occurring on the longest timescales and largest spatial scales. When both the time-averaged source structure and the spatially integrated light-curve variability are removed, the residual power spectrum exhibits a universal broken power-law behavior. On small spatial frequencies, the residual power spectrum rises as the square of the spatial frequency and is proportional to the variance in the centroid of emission. Beyond some peak in variability power, the residual power spectrum falls as that of the time-averaged source structure, which is similar across simulations; this behavior can be naturally explained if the variability arises from a multiplicative random field that has a steeper high-frequency power-law index than that of the time-averaged source structure. We briefly explore the ability of power spectral variability studies to constrain physical parameters relevant for the GRMHD simulations, which can be scaled to provide predictions for black holes in a range of systems in the optically thin regime. We present specific expectations for the behavior of the M87* and Sgr A* accretion flows as observed by the EHT.

AlkuperäiskieliEnglanti
ArtikkeliL20
Sivut1-32
Sivumäärä32
JulkaisuAstrophysical Journal Letters
Vuosikerta930
Numero2
DOI - pysyväislinkit
TilaJulkaistu - 1 toukok. 2022
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki

Sukella tutkimusaiheisiin 'A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä