A Unified Review of Deep Learning for Automated Medical Coding

Shaoxiong Ji*, Xiaobo Li, Wei Sun, Hang Dong, Ara Taalas, Yijia Zhang, Honghan Wu, Esa Pitkänen, Pekka Marttinen

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

6 Sitaatiot (Scopus)
72 Lataukset (Pure)

Abstrakti

Automated medical coding, an essential task for healthcare operation and delivery, makes unstructured data manageable by predicting medical codes from clinical documents. Recent advances in deep learning and natural language processing have been widely applied to this task. However, deep learning-based medical coding lacks a unified view of the design of neural network architectures. This review proposes a unified framework to provide a general understanding of the building blocks of medical coding models and summarizes recent advanced models under the proposed framework. Our unified framework decomposes medical coding into four main components, i.e., encoder modules for text feature extraction, mechanisms for building deep encoder architectures, decoder modules for transforming hidden representations into medical codes, and the usage of auxiliary information. Finally, we introduce the benchmarks and real-world usage and discuss key research challenges and future directions.

AlkuperäiskieliEnglanti
Artikkeli306
JulkaisuACM Computing Surveys
Vuosikerta56
Numero12
DOI - pysyväislinkit
TilaJulkaistu - 1 lokak. 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'A Unified Review of Deep Learning for Automated Medical Coding'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä