Projekteja vuodessa
Abstrakti
Quantum Optimal Control is an established field of research which is necessary for the development of Quantum Technologies. In recent years, Machine Learning techniques have been proved useful to tackle a variety of quantum problems. In particular, Reinforcement Learning has been employed to address typical problems of control of quantum systems. In this tutorial we introduce the methods of Quantum Optimal Control and Reinforcement Learning by applying them to the problem of three-level population transfer. The jupyter notebooks to reproduce some of our results are open-sourced and available on github1.
Alkuperäiskieli | Englanti |
---|---|
Artikkeli | 128054 |
Sivut | 1-13 |
Sivumäärä | 13 |
Julkaisu | Physics Letters, Section A: General, Atomic and Solid State Physics |
Vuosikerta | 434 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 16 toukok. 2022 |
OKM-julkaisutyyppi | A1 Julkaistu artikkeli, soviteltu |
Sormenjälki
Sukella tutkimusaiheisiin 'A tutorial on optimal control and reinforcement learning methods for quantum technologies'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 2 Päättynyt
-
Quantum-Enhanced Detection
Paraoanu, G., Björkman, I., McCord, J. & Sultanov, A.
01/01/2020 → 31/12/2022
Projekti: Academy of Finland: Other research funding
-
Kvanttiteknologian huippuyksikkö
Paraoanu, G., Dogra, S., Petrovnin, K., Lan, D. & McCord, J.
01/01/2018 → 31/12/2020
Projekti: Academy of Finland: Other research funding