Abstrakti
A cactus graph is a graph in which any two cycles are edge-disjoint. We present a constructive proof of the fact that any plane graph G contains a cactus subgraph C where C contains at least a 1/6 fraction of the triangular faces of G. We also show that this ratio cannot be improved by showing a tight lower bound. Together with an algorithm for linear matroid parity, our bound implies two approximation algorithms for computing "dense planar structures" inside any graph: (i) A 1/6 approximation algorithm for, given any graph G, finding a planar subgraph with a maximum number of triangular faces; this improves upon the previous 1/11-approximation; (ii) An alternate (and arguably more illustrative) proof of the 4/9 approximation algorithm for finding a planar subgraph with a maximum number of edges. Our bound is obtained by analyzing a natural local search strategy and heavily exploiting the exchange arguments. Therefore, this suggests the power of local search in handling problems of this kind.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019) |
Kustantaja | Schloss Dagstuhl-Leibniz-Zentrum für Informatik |
Sivut | 1-14 |
Sivumäärä | 14 |
ISBN (elektroninen) | 978-3-95977-100-9 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2019 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisuussa |
Tapahtuma | Symposium on Theoretical Aspects of Computer Science - Berlin, Saksa Kesto: 13 maalisk. 2019 → 16 maalisk. 2019 Konferenssinumero: 36 |
Julkaisusarja
Nimi | Leibniz international proceedings in informatics |
---|---|
Kustantaja | Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing |
Vuosikerta | 126 |
ISSN (elektroninen) | 1868-8969 |
Conference
Conference | Symposium on Theoretical Aspects of Computer Science |
---|---|
Lyhennettä | STACS |
Maa/Alue | Saksa |
Kaupunki | Berlin |
Ajanjakso | 13/03/2019 → 16/03/2019 |