A task-based evaluation of combined set and network visualization

Peter Rodgers, Gem Stapleton*, Bilal Alsallakh, Luana Micallef, Rob Baker, Simon Thompson

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

11 Sitaatiot (Scopus)
319 Lataukset (Pure)

Abstrakti

This paper addresses the problem of how best to visualize network data grouped into overlapping sets. We address it by evaluating various existing techniques alongside a new technique. Such data arise in many areas, including social network analysis, gene expression data, and crime analysis. We begin by investigating the strengths and weakness of four existing techniques, namely Bubble Sets, EulerView, KelpFusion, and LineSets, using principles from psychology and known layout guides. Using insights gained, we propose a new technique, SetNet, that may overcome limitations of earlier methods. We conducted a comparative crowdsourced user study to evaluate all five techniques based on tasks that require information from both the network and the sets. We established that EulerView and SetNet, both of which draw the sets first, yield significantly faster user responses than Bubble Sets, KelpFusion and LineSets, all of which draw the network first.

AlkuperäiskieliEnglanti
Sivut58-79
Sivumäärä22
JulkaisuInformation Sciences
Vuosikerta367-368
DOI - pysyväislinkit
TilaJulkaistu - 1 marrask. 2016
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'A task-based evaluation of combined set and network visualization'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä